### Fast facts about plastic bags A quick-reference resource based De-bunks the 'greenwash' well worth reading on science not spin

Facts and calculations based on UK Environment Agency Report SC030148/2011



The lightweight supermarket "vest-style" carrier bag is the most environmentally-efficient with the lowest carbon footprint if re-used or recycled. IF THESE BAGS ARE BANNED OR TAXED IT WOULD BE WORSE FOR THE ENVIRONMENT

The real CO<sub>2</sub> impact of plastic bags compared with everyday life



UK average daily car journey = 10 kg of CO<sub>2</sub> SO 1 x 30 mile trip



Just one long haul return flight = 1750kg of CO<sub>2</sub> Equivalent to



The total annual UK consumption

of 6.5 billion carrier bags



3 years of average household plastic bag impacts



More than 500 years of plastic bag **impacts** for a typical household



Just one 8 mile trip for every car registered in the UK



The total annual UK consumption of 6.5 billion carrier bags

Or put another way...



Around 2 hours of flight activity at **Heathrow Airport** 

Wow! So why are we bleating on about carrier bags?

## Why thin bags are better

# Comparing the total global warming potential (GWP) of all carrier bag materials

Total global warming potential shown in Kg/C02 equivalency

| BAG TYPE                               | AVERAGE BAG<br>WEIGHT (g) | C0 <sub>2</sub> EQUIVALENT PER<br>IKG OF BAGS | C0 <sub>2</sub> EQUIVALENT<br>PER BAG (KG) |
|----------------------------------------|---------------------------|-----------------------------------------------|--------------------------------------------|
| HDPE Thin Supermarket Bag              | 8.12                      | 1.578                                         | 0.0128                                     |
| Oxo Degradable Carrier Bag             | 8·27                      | ا.√750                                        | 0.0142                                     |
| Starch Based Biodegradable Carrier Bag | 16.49                     | 4.184                                         | 0.0690                                     |
| LDPE Bag for Life                      | 34.94                     | 6.924                                         | 0.242                                      |
| Non Woven PP Bag for Life              | 115.83                    | 21.510                                        | 2.491                                      |
| Woven PP Bag for Life                  | 120                       | 23.088                                        | 2.770                                      |
| Plain Paper Carrier Bag                | 55·2                      | 5.525                                         | 0.305                                      |
| Cotton Bag                             | 183.11                    | 271.533                                       | 49.720                                     |
| Jute Bag                               | 190                       | 273.111                                       | 51.891                                     |

DATA SOURCE: LIFE CYCLE ASSESSMENT OF SUPERMARKET CARRIER BAGS REPORT SC030148, PUBLISHED BY THE ENVIRONMENT AGENCY WITH ADDITIONAL MANUFACTURER'S DATA FROM EUROPACKAGING PLC

#### So what do the figures mean?

To get impacts down as low as a typical lightweight supermarket bag, we'd need to reuse the following bags many times



A Paper Bag has to be re-used 4 times whereas most are never re-used at all



An LDPE 'Bag for Life' has to be re-used 5 times



A Non Woven PP Bag has to be re-used 14 times



A Cotton / Jute Bag has to be re-used 173 times

Textile bags attract nasty germs, need regular washing = even washing = even wore impacts!

## Where do the impacts occur?

|    |                                              | FROM<br>OIL WELL TO POLYMER<br>PLANT                                         | TO BAG<br>MANUFACTURER BAG<br>PRODUCTION                                                      | SHIPPED TO<br>WAREHOUSE DELIVERED<br>TO STORE                           | WASTE<br>IMPACTS        | CARBON<br>FOOTPRINT<br>PER BAG |
|----|----------------------------------------------|------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|-------------------------|--------------------------------|
|    | HDPE Thin<br>Supermarket<br>Bag              | C0 <sub>2</sub> Impact from total<br>oil extraction<br>= <b>7.68g</b> (60%)  | C0 <sub>2</sub> Impact from total<br>manufacture<br>= <b>3.584g</b> (28%)                     | C0 <sub>2</sub> Impact from total<br>transport<br>= <b>0.896g</b> (7%)  | <b>0.64g</b><br>(5%)    | I 2.8g                         |
|    | Oxo<br>Degradable<br>Carrier Bag             | C0 <sub>2</sub> Impact from total<br>oil extraction<br>= <b>8.7g</b> (60%)   | C0 <sub>2</sub> Impact from total<br>manufacture<br>= <b>4.032g</b> (28%)                     | C0 <sub>2</sub> Impact from total<br>transport<br>= <b>1.015g</b> (7%)  | <b>0.725g</b><br>(5%)   | 14.5g                          |
|    | Starch Based<br>Biodegradable<br>Carrier Bag | C0 <sub>2</sub> Impact from grown<br>crops<br>= <b>End of Life*</b>          | C0 <sub>2</sub> Impact from extraction<br>production of raw materials<br>= <b>34.5g</b> (50%) | C0 <sub>2</sub> Impact from total<br>transport<br>= <b>I 3.8g</b> (20%) | <b>20.7g</b> (30%)      | 69g                            |
|    | LDPE<br>Bag for Life                         | C0 <sub>2</sub> Impact from total<br>oil extraction<br>= <b>157.3g</b> (65%) | C0 <sub>2</sub> Impact from total<br>manufacture<br>= <b>48.4g</b> (20%)                      | C0 <sub>2</sub> Impact from total<br>transport<br>= <b>16.94g</b> (7%)  | <b>19.36g</b><br>(8%)   | 242g                           |
|    | Non Woven<br>PP Bag for Life                 | C0 <sub>2</sub> Impact from total<br>oil extraction<br>= <b>1,868g</b> (75%) | C0 <sub>2</sub> Impact from total<br>manufacture<br>= <b>249.1g</b> (10%)                     | C0 <sub>2</sub> Impact from total<br>transport<br>= <b>249.1g</b> (10%) | 1 <b>24.55g</b><br>(5%) | 2,491g                         |
|    | Woven<br>PP Bag for Life                     | C0 <sub>2</sub> Impact from total<br>oil extraction<br>= <b>2,077g</b> (75%) | C0 <sub>2</sub> Impact from total<br>manufacture<br>= <b>277g</b> (10%)                       | C0 <sub>2</sub> Impact from total<br>transport<br>= <b>277g</b> (10%)   | <b>138.5g</b><br>(5%)   | 2,770g                         |
|    |                                              | CROP PLANT COMPOSTING<br>(END OF LIFE)                                       | FABRIC<br>WEAVE BAG<br>MAKING                                                                 | SHIPPED TO<br>WAREHOUSE DELIVERED                                       | WASTE                   | CARBON<br>FOOTPRINT<br>PER BAG |
|    | Plain Paper<br>Carrier Bag                   | C0 <sub>2</sub> Impact from grown<br>crops<br>= <b>End of Life</b> *         | C0 <sub>2</sub> Impact from material<br>production & manufacture<br>= <b>228.75g</b> (75%)    | C0 <sub>2</sub> Impact from total<br>transport<br>= <b>39.65g</b> (13%) | <b>36.6g</b> (12%)      | 305g                           |
| 12 | Cotton<br>Bag                                | C0 <sub>2</sub> Impact from grown<br>crops<br>= <b>End of Life</b> *         | C0 <sub>2</sub> Impact from material<br>production & manufacture<br>= <b>42,262g</b> (85%)    | C0 <sub>2</sub> Impact from total<br>transport<br>= <b>4,972g</b> (10%) | <b>2,486g</b><br>(5%)   | 49,720g                        |
| 2  | Jute Bag                                     | C0 <sub>2</sub> Impact from grown<br>crops<br>= <b>End of Life</b> *         | $C0_2$ Impact from material<br>production & manufacture<br>= <b>44.1109</b> (85%)             | C0 <sub>2</sub> Impact from total<br>transport<br>= <b>5.189</b> (10%)  | <b>2,595g</b><br>(5%)   | 51,891g                        |

\*The Carbon Dioxide absorbed during the crop's life is given off during bio degradation of the bag at composting.

#### The really realistic solution

Whatever environmental issue we are talking about, there is one universal solution – Reduce, Re-use and Recycle. Plastics offer this solution more than any other option for carrier bags so we can all:

- Reduce the number of bags we use and choose the bag which offers the most resource reduction (lightweight plastic or plastic bags-for-life)
- Re-use our bags time and time again for shopping and for other purposes (76% of British households already do this. Are you one of them?)
- Recycle any bags you don't need. (You can do this at over 5000 supermarket collection points but remember these take conventional plastic not the heavyweight, mixed material or fabric bags). Then the bags can be turned back into bin bags or other useful products like litter bins!

P.S. only 0.03% of litter is plastic supermarket bags so why let litter louts get away with it?

#### Why plastic bags are bags better Myth Busters

150,000 Paper carrier bags

> 150,000 Plastic

Conventional plastic bags have the greatest environmental impacts **UNTRUE** Conventional plastic bags have the lowest global

warming potential **FACT** 

Plastic used for bag production seriously depletes oil reserves **UNTRUE** Plastic used for bag production largely comes from bi-products of oil refining such as naphtha and ethylene **FACT** 

Heavy-duty, hand-finished, shopping bags are better for the environment **UNTRUE** Heavy duty bags may be designed to last longer but require far greater resource in production which together with transportation and storage impacts

negates any perceived environmental advantage **FACT** 

Bags made from natural and sustainable materials (such as cotton and jute) are better for the environment **MYTH** 

Using these materials for bags wastes all the resources needed for growing the materials and requires an unrealistically high incidence of re-use before they even come close to the low impacts of plastic (which can always be recycled) **FACT** 

Biodegradable plastics are better for the environment **MYTH** Biodegradable plastics can wreck conventional plastic recycling systems, can give off methane when decomposing and have limited re-use options due to their shorter life **FACT** 

#### What UK Retailers have achieved since 2006

- 🗸 40% fewer plastic bags issued
- 🗸 4 Billion fewer plastic bags used
- 🗸 5000 new plastic bag recycling sites
- More recycled plastic in bags
- 🗸 61% less virgin plastic used in bags



Useful websites references are: http://www.wrap.org.uk/downloads/LA\_FactSheet\_6\_Carrier\_Bags.5b784c57.10716.pdf http://www.environment-agency.gov.uk/research/library/publications/129364.aspx www.use-less-stuff.com www.carrierbagtax.com www.incpen.org